microRNAs and genetic diseases
نویسندگان
چکیده
microRNAs (miRNAs) are a class of small RNAs (19-25 nucleotides in length) processed from double-stranded hairpin precursors. They negatively regulate gene expression in animals, by binding, with imperfect base pairing, to target sites in messenger RNAs (usually in 3' untranslated regions) thereby either reducing translational efficiency or determining transcript degradation. Considering that each miRNA can regulate, on average, the expression of approximately several hundred target genes, the miRNA apparatus can participate in the control of the gene expression of a large quota of mammalian transcriptomes and proteomes. As a consequence, miRNAs are expected to regulate various developmental and physiological processes, such as the development and function of many tissue and organs. Due to the strong impact of miRNAs on the biological processes, it is expected that mutations affecting miRNA function have a pathogenic role in human genetic diseases, similar to protein-coding genes. In this review, we provide an overview of the evidence available to date which support the pathogenic role of miRNAs in human genetic diseases. We will first describe the main types of mutation mechanisms affecting miRNA function that can result in human genetic disorders, namely: (1) mutations affecting miRNA sequences; (2) mutations in the recognition sites for miRNAs harboured in target mRNAs; and (3) mutations in genes that participate in the general processes of miRNA processing and function. Finally, we will also describe the results of recent studies, mostly based on animal models, indicating the phenotypic consequences of miRNA alterations on the function of several tissues and organs. These studies suggest that the spectrum of genetic diseases possibly caused by mutations in miRNAs is wide and is only starting to be unravelled.
منابع مشابه
Role of microRNA as a biomarker in Alzheimer’s disease
Introduction: MicroRNAs are small, non-coding, and protected RNA molecules that regulate gene expression after transcription by mRNA degradation or inhibition of protein synthesis. The function of these molecules is critical to many cellular processes, including growth, development, differentiation, homeostasis, apoptosis, aging, stress resistance. In addition, some diseases including cancer, a...
متن کاملThe role of miRNA in Recurrent Spontaneous Abortion
Abortion is a term used for missing of fetus before 20th week of pregnancy, which is a common complication of pregnancy and its aetiology usually remains unknown. Known aetiologies for this phenomenon include structural malformation of uterus, genetic anomalies, autoimmune conditions, endocrine defects, coagulative and trombophilic disorders, polycystic ovary, obesity, and lifestyle. Abortion h...
متن کاملThe role of microRNAs in cardiovascular disease
Cardiovascular disease has become the main factor of death and birth defects in the world. There are some therapeutic structures and drugs for curative and palliative therapy of the disease, but to the aim of accessing reliable therapy or to postpone onset of disease, especially for individuals with heritable coronary artery disease in their pedigree Genetic engineering technologies are making...
متن کاملEffects of microRNAs polymorphism in cancer progression
MicroRNAs (miRNAs) are known as a new class of small RNAs (18-25 nucleotides) that regulate gene expression at multiple levels from transcription to translation. Considering the important role of miRNAs in cell proliferation, differentiation, and apoptosis, any variations in their expression can contribute to various anomalies, such as tumorigenesis. Single-nucleotide polymorphisms (SNPs) have ...
متن کاملInsights into role of microRNAs in cardiac development, cardiac diseases, and developing novel therapies
Objective(s): MicroRNAs (miRNAs) are a subfamily of small noncoding RNAs that play a variety of roles in regulating gene expression in nearly all organisms. They affect different biological pathways by post-transcriptionally regulating mRNAs. Aside from miRNAs’ role in maintaining cellular homeostasis, their perturbation is related to several pathologic states and dis...
متن کاملThe role of exosomes contents on genetic and epigenetic alterations of recipient cancer cells
Exosomes, as a mediator of cell-to-cell transfer of genetic information, act an important role in intercommunication between tumor cells and their niche including fibroblasts, endothelial cells, adipocytes and monocytes. Several studies have shown that tumor cells can influence their neighboring cells by releasing exosomes. These exosomes provide signaling cues for stimulation, activation, prol...
متن کامل